Article by Adam Equipment: How Scales are Used in Manufacturing Rechargeable Batteries

Article by Adam Equipment: How Scales are Used in Manufacturing Rechargeable Batteries

Adam Equipment (United Kingdom) - As more and more of our devices are battery powered for on-the-go use and as the world slowly transitions from gas power to electric power for cars and trucks, rechargeable batteries have become much more important. It’s likely demand will surge for decades to come, too.

For battery manufacturing, scales may not be the first piece of equipment that comes to mind, but they play a crucial role in the process. In this blog, we’ll look at two of the most common rechargeable battery types, how they’re manufactured and where scales come into play during that process.

Lithium-Ion Batteries:

While also used for portable electronics, rechargeable Lithium-Ion (Li-Ion) batteries are the type of battery most often used to power electric vehicles and hybrid cars. The global push away from fossil fuels toward electric vehicles has car manufacturers scrambling to build their own battery plants. In the UK, the government has banned sales of new petrol and diesel cars from 2030. From that date, only new pure electric and hybrid vehicles will be sold. This means huge changes for UK car manufacturers in a very short space of time. Additionally, from 2027, at least 55% of an electric car must be built in the UK or EU, so that it remains exempt from import or export tariffs.

Li-Ion batteries – which, thanks to their secondary cell construction, are rechargeable – offer a high energy density, no memory effect (some battery types gradually lose their maximum capacity after being repeatedly recharged after only a partial discharge) and low self-discharge, while also offering the option during manufacturing to prioritize either energy density or power density.

With this type of battery, lithium ions move from the negative electrode (typically made of graphite) through an electrolyte to the positive electrode (made of an intercalated lithium compound) during discharge and, while charging, back from the positive electrode to the negative.

Unlike Li-Ion batteries, standard Lithium batteries (due to their single cell construction) aren’t rechargeable.

Nickel-Metal Hydride Batteries:

Nickel-Metal Hydride (Ni-MH) batteries are sometimes used for vehicles, but more often are used for medical equipment, mobile phones, digital cameras, electric toothbrushes and other lower-cost consumer products.

The overall life cycle of Ni-MH batteries averages two to five years, while Li-Ion batteries generally last about five years.

Ni-MH batteries feature a positive plate (nickel hydroxide) and a negative plate (made up mostly of hydrogen-absorbing alloys) separated by fine fibers, an alkaline electrolyte, a metal case and a sealing plate with a safety vent.

Making a Battery:

The process of making a battery typically starts with the mixing of an electrode slurry, made with powders containing the active materials in electrodes (like lithium) and binding materials to form the “batter.” Factors such as viscosity, density and solid content directly affect the quality of the battery and the electrode.

While the process from this point may vary for different batteries, the typical manufacturing process often follows these general steps:

The slurry is spread out onto a long piece of foil, which slowly makes its way through heat up to 150°C to bake the electrode into a solid.

Once baked, the electrode roll is cut into smaller pieces and then placed under a sharp, rectangular die, which quickly pushes down onto the sheet to cut out the individual electrode battery pieces. Using suction to lift sheets of cut-out electrode material, an insulating layer is sandwiched between the sheets. When complete, the result is an electrode stack.

Next, a moisture-resistant barrier material is pressed into rectangular forms and an electrode stack is inserted into the form to create a pouch cell. Liquid electrolyte is injected into an open battery pouch, which is then heat-sealed and placed in a vacuum chamber to remove excess air.

The Role of Scales in Battery Manufacturing:

The quality of the electrode slurry is crucial to the effectiveness of a battery, so getting the proper mixture of ingredients is critical. To ensure an accurate mix, analytical and precision lab balances like Adam’s Equinox and Solis ranges can be used for quality control of test samples of slurry to ensure that product standards are maintained.

Moisture can be an issue for batteries: too much moisture causes corrosion and can lead to short circuiting, as well as decrease performance and reduce the battery’s life expectancy. Many battery manufacturers use dry rooms to reduce moisture contamination. By using a moisture analyser to test components and powders (including cathode electrode squares, anode electrode squares and cathode powder), the chance of moisture contamination can be reduced even further.

For large-scale batching, platform scales like GB, GF and PT can be used to weigh battery chemical components in drums, as well as for packaging and shipping once manufacturing is complete.

For more information about this article from Adam Equipment click here.

Source link

Other articles from Adam Equipment.

Interesting Links:
GameMarket.pt - Your Gaming Marketplace with Video Games, Consoles, PC Gaming, Retro Gaming, Accessories, etc. !

Are you interested on the Weighing Industry? Visit Weighing Review the First and Leading Global Resource for the Weighing Industry where you can find news, case studies, suppliers, marketplace, etc!

Are you interested to include your Link here, visible on all AutomationInside.com articles and marketplace product pages? Contact us

© Adam Equipment / Automation Inside

Share this Article!

Interested? Submit your enquiry using the form below:

Only available for registered users. Sign In to your account or register here.

Weightron’s Industrial Waste System Brings Triple Cost Benefits to Major UK Plastic Container Manufacturer

Article by Loma Systems: The Importance of Testing